Teaching

Lectures

Paderborn University

  • Data Mining, Summer 2019 and 2020
  • Online and Adaptive Machine Learning, Winter 2019/20 and 2020/21

LMU Munich

  • Supervised Learning, Summer 2022
  • Advanced Machine Learning, Summer 2022
  • Online Machine Learning and Bandits, Winter 2022/23 and 2023/24
  • Optimization for Machine Learning, Summer 2023

Project Groups

Paderborn University

  • duelpy, Summer 2020 and Winter 2020/21

LMU Munich


(Co-)Supervised PhD Candidates


(Co-)Supervised Master's Theses

  • Jiachun Zhang, Anti-concentration Inequalities and Uniform Confidence Bands, University of Marburg, 2016
  • Patrick Irenäus Kolpaczki, Non-stationary Dueling Bandits, Paderborn University, 2021
  • Timo Kaufmann, Curiosity-Driven Semi-Supervised Reinforcement Learning, Paderborn University, 2021
  • Jianyu Zha, Conformal Prediction for Label Ranking Problem, LMU Munich, 2022
  • Shivam Sharma, Contextual Preselection Bandits in Pool-Based Realtime Algorithm Configuration, Paderborn University, 2023
  • Sebastian Müller, On Practical Application of Discrete Choice Models for Personalized Pricing, LMU Munich in cooperation with Hoffmann Group, 2023

(Co-)Supervised Bachelor's Theses

  • Leon Roschig, Embedding Discrete- into Continuous-time Markov Chains, University of Marburg, 2015
  • Dominik Hecker, Das Binomialmodell: Exakte und asymptotische Optionspreisbewertung, University of Marburg, 2016
  • Felix Lange, Detecting Concept Changes in Preference Data Streams, Paderborn University, 2021
  • Sven Meyer, Implementierung des Sugeno Klassifizierers, Paderborn University, 2021
  • Mohness Waizy, LSH-based Similarity Search on Big Rank Data under the Kendall's Tau Distance, Paderborn University, 2021
  • Miriam Kranzlmüller, Copula Extensions of Probabilistic Circuits, LMU Munich, 2022
  • Simon Nagy, Python Package for Mallows Ranking Model, LMU Munich, 2022
  • Martina Georgieva, LSH-based Similarity Search for Ranking Data using Shingling, LMU Munich, 2022
  • Daniel Ebensberger, Implementation of the Choquet Classifier, LMU Munich, 2022
  • Björn Gillich, A Random Generator for Valued Binary Relations with Generalized Transitivity Properties, LMU Munich, 2022
  • Patrick Becker, Shapley Value-based Feature Selection for Online Algorithm Selection, LMU Munich, 2023
  • Aurel Eppert, Python Package for the Babington Smith Model, LMU Munich, 2023
  • Johannes Möller, Ranking with the Plackett-Luce Model Allowing for Ties: A Python Implementation, LMU Munich, 2023
  • Santo Maria Amado Rocco Thies, Single-Peaked Präferenzen für die Modellierung politischer Orientierungen, LMU Munich, 2023
  • Manuel Hüelsekamp, On Optimizing the Convex Problem Behind Shapley Values for Feature Importance in Explainable AI, LMU Munich, 2024
  • Jiyai Wang, A Comparative Analysis of Rank Aggregation Methods for the Partial Label Ranking Problem, LMU Munich, 2024
  • Deben Lin, On Randomized UCB in Monte-Carlo Tree Search, LMU Munich, 2024

Tutorials and Exercise Courses

University of Marburg

  • Einführung in die stochastische Analysis, Summer 2015
  • Nichtparametrische Statistik, Winter 2015/16
  • Mathematik II (Einführung in die Analysis), Summer 2016
  • Quantitatives Risikomanagement, Winter 2016/17
  • Praktikum zur Stochastik, Winter 2017/18 and Summer 2018

LMU Munich

  • Uncertainty in Artificial Intelligence and Machine Learning, Winter 2021/22