Lectures
Paderborn University
- Data Mining, Summer 2019 and 2020
- Online and Adaptive Machine Learning, Winter 2019/20 and 2020/21
LMU Munich
- Supervised Learning, Summer 2022
- Advanced Machine Learning, Summer 2022
- Online Machine Learning and Bandits, Winter 2022/23 and 2023/24
- Optimization for Machine Learning, Summer 2023
Project Groups
Paderborn University
- duelpy, Summer 2020 and Winter 2020/21
LMU Munich
(Co-)Supervised PhD Candidates
(Co-)Supervised Master's Theses
- Jiachun Zhang, Anti-concentration Inequalities and Uniform Confidence Bands, University of Marburg, 2016
- Patrick Irenäus Kolpaczki, Non-stationary Dueling Bandits, Paderborn University, 2021
- Timo Kaufmann, Curiosity-Driven Semi-Supervised Reinforcement Learning, Paderborn University, 2021
- Jianyu Zha, Conformal Prediction for Label Ranking Problem, LMU Munich, 2022
- Shivam Sharma, Contextual Preselection Bandits in Pool-Based Realtime Algorithm Configuration, Paderborn University, 2023
- Sebastian Müller, On Practical Application of Discrete Choice Models for Personalized Pricing, LMU Munich in cooperation with Hoffmann Group, 2023
(Co-)Supervised Bachelor's Theses
- Leon Roschig, Embedding Discrete- into Continuous-time Markov Chains, University of Marburg, 2015
- Dominik Hecker, Das Binomialmodell: Exakte und asymptotische Optionspreisbewertung, University of Marburg, 2016
- Felix Lange, Detecting Concept Changes in Preference Data Streams, Paderborn University, 2021
- Sven Meyer, Implementierung des Sugeno Klassifizierers, Paderborn University, 2021
- Mohness Waizy, LSH-based Similarity Search on Big Rank Data under the Kendall's Tau Distance, Paderborn University, 2021
- Miriam Kranzlmüller, Copula Extensions of Probabilistic Circuits, LMU Munich, 2022
- Simon Nagy, Python Package for Mallows Ranking Model, LMU Munich, 2022
- Martina Georgieva, LSH-based Similarity Search for Ranking Data using Shingling, LMU Munich, 2022
- Daniel Ebensberger, Implementation of the Choquet Classifier, LMU Munich, 2022
- Björn Gillich, A Random Generator for Valued Binary Relations with Generalized Transitivity Properties, LMU Munich, 2022
- Patrick Becker, Shapley Value-based Feature Selection for Online Algorithm Selection, LMU Munich, 2023
- Aurel Eppert, Python Package for the Babington Smith Model, LMU Munich, 2023
- Johannes Möller, Ranking with the Plackett-Luce Model Allowing for Ties: A Python Implementation, LMU Munich, 2023
- Santo Maria Amado Rocco Thies, Single-Peaked Präferenzen für die Modellierung politischer Orientierungen, LMU Munich, 2023
- Manuel Hüelsekamp, On Optimizing the Convex Problem Behind Shapley Values for Feature Importance in Explainable AI, LMU Munich, 2024
- Jiyai Wang, A Comparative Analysis of Rank Aggregation Methods for the Partial Label Ranking Problem, LMU Munich, 2024
- Deben Lin, On Randomized UCB in Monte-Carlo Tree Search, LMU Munich, 2024
Tutorials and Exercise Courses
University of Marburg
- Einführung in die stochastische Analysis, Summer 2015
- Nichtparametrische Statistik, Winter 2015/16
- Mathematik II (Einführung in die Analysis), Summer 2016
- Quantitatives Risikomanagement, Winter 2016/17
- Praktikum zur Stochastik, Winter 2017/18 and Summer 2018
LMU Munich
- Uncertainty in Artificial Intelligence and Machine Learning, Winter 2021/22